3,354 research outputs found

    A joint probability approach to flood frequency estimation using Monte Carlo simulation

    Get PDF
    In the UK, flood estimation using event based rainfall–runoff modelling currently assigns pre-defined design values to the input variables which control the size of the flow events, apart from the rainfall magnitude which is treated as a random variable. The use of design values, rather than allowing the variables to be described by their full probability distribution, is a practical simplification but may lead to biases in the output flood magnitudes. The present study simulates a large number of flow events using sets of input variables from distributions fitted to observed event data, taking into account seasonality. These simulated datasets are used for running a rainfall-runoff model, and a frequency analysis is applied to the peaks of the output flow hydrographs. The simulated inputs are the rainfall intensity and duration, and the soil moisture deficit (SMD) and initial river flow at the beginning of the rainfall event. An inter-event arrival time is simulated so that a series of events is obtained. The initial conditions of SMD and river flow of each event are made dependent on the (simulated) time elapsed since the previous event, and on the SMD at the end of the previous event

    Piggybacking on an Autonomous Hauler: Business Models Enabling a System-of-Systems Approach to Mapping an Underground Mine

    Full text link
    With ever-increasing productivity targets in mining operations, there is a growing interest in mining automation. In future mines, remote-controlled and autonomous haulers will operate underground guided by LiDAR sensors. We envision reusing LiDAR measurements to maintain accurate mine maps that would contribute to both safety and productivity. Extrapolating from a pilot project on reliable wireless communication in Boliden's Kankberg mine, we propose establishing a system-of-systems (SoS) with LIDAR-equipped haulers and existing mapping solutions as constituent systems. SoS requirements engineering inevitably adds a political layer, as independent actors are stakeholders both on the system and SoS levels. We present four SoS scenarios representing different business models, discussing how development and operations could be distributed among Boliden and external stakeholders, e.g., the vehicle suppliers, the hauling company, and the developers of the mapping software. Based on eight key variation points, we compare the four scenarios from both technical and business perspectives. Finally, we validate our findings in a seminar with participants from the relevant stakeholders. We conclude that to determine which scenario is the most promising for Boliden, trade-offs regarding control, costs, risks, and innovation must be carefully evaluated.Comment: Preprint of industry track paper accepted for the 25th IEEE International Conference on Requirements Engineering (RE'17

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Nonlinear state space smoothing using the conditional particle filter

    Full text link
    To estimate the smoothing distribution in a nonlinear state space model, we apply the conditional particle filter with ancestor sampling. This gives an iterative algorithm in a Markov chain Monte Carlo fashion, with asymptotic convergence results. The computational complexity is analyzed, and our proposed algorithm is successfully applied to the challenging problem of sensor fusion between ultra-wideband and accelerometer/gyroscope measurements for indoor positioning. It appears to be a competitive alternative to existing nonlinear smoothing algorithms, in particular the forward filtering-backward simulation smoother.Comment: Accepted for the 17th IFAC Symposium on System Identification (SYSID), Beijing, China, October 201

    On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System: Outage-Limited Scenario

    Full text link
    This paper investigates the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency on the performance of the MIMO-HARQ systems is analyzed. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas.Comment: Under review in IEEE Transactions on Communication

    Soft metrics and their Performance Analysis for Optimal Data Detection in the Presence of Strong Oscillator Phase Noise

    Get PDF
    In this paper, we address the classical problem of maximum-likelihood (ML) detection of data in the presence of random phase noise. We consider a system, where the random phase noise affecting the received signal is first compensated by a tracker/estimator. Then the phase error and its statistics are used for deriving the ML detector. Specifically, we derive an ML detector based on a Gaussian assumption for the phase error probability density function (PDF). Further without making any assumptions on the phase error PDF, we show that the actual ML detector can be reformulated as a weighted sum of central moments of the phase error PDF. We present a simple approximation of this new ML rule assuming that the phase error distribution is unknown. The ML detectors derived are also the aposteriori probabilities of the transmitted symbols, and are referred to as soft metrics. Then, using the detector developed based on Gaussian phase error assumption, we derive the symbol error probability (SEP) performance and error floor analytically for arbitrary constellations. Finally we compare SEP performance of the various detectors/metrics in this work and those from literature for different signal constellations, phase noise scenarios and SNR values
    • …
    corecore